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Abstract—Seventeen unsymmetrical curcumin derivatives were synthesized in good yield and purity by a facile solid phase synthesis
strategy.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. General structure of curcumin derivatives.
Curcumin, a yellow pigment isolated from the root of
Curcuma longa rhizomes, was widely used as food addi-
tive for many years. It has been found in the last decades
that curcumin derivatives possess broad biological activ-
ities, such as antioxidant activity,1 anti-imflammatory
properties,2 anti-HIV protease activity3 and cancer
preventive properties.4,5 Although the poor solubility
becomes a major problem in pharmacological test, a
large number of curcumin derivatives were prepared
and investigated by medicinal chemists owing to their
excellent bioactivities along with low toxicity.

Synthetic curcumin derivatives could be simply obtained
via one step coupling of 2 equiv aromatic aldehydes with
1 equiv acetylacetone.6 The disadvantage is obvious,
however, that the equal reactivity of the two terminal
a-carbons (a-C) in acetylacetone provides the same
chance when they are reacted with aldehydes, resulting
in only symmetrical curcumin derivatives (Fig. 1,
Ar1 = Ar2). The synthesis of unsymmetrical curcumin
derivatives, which have different aromatic moieties
(Ar1 5 Ar2), needed more tricks. Early solution is by
using excessive acetylacetone to react with aldehyde to
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form mono-aromatic ring substituted hexanone in the
first step, then followed by condensation with another
aromatic aldehyde.7 This strategy is inconvenient in
the practical operation when a way of parallel or combi-
natorial synthesis was proposed because of the low yield
and the requirement of column chromatography for
purification. To the best of our knowledge, despite the
intensive chemical and pharmacological investigations
of various symmetrical curcumin derivatives, studies
on unsymmetrical curcumin compounds actually remain
scarce. Herein, we first describe a facile solid-phase syn-
thesis strategy to prepare the novel unsymmetrical cur-
cumin derivatives in high purity and good yield,
targeting on the diversity of curcumin derivatives for
further activity screening.

As efficient tools in rapid generation of diverse libraries
of drug-like compounds, solid-phase synthesis and com-
binatorial chemistry have been well known in drug dis-
covery. Our strategy is based on the ‘pseudo-dilution
effect’, in which large size of the solid supports renders
the resin-bound species inaccessible to each other and
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Scheme 1. Parallel synthesis of unsymmetrical curcumin derivatives.
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Scheme 2. Protection of methylene of acetylacetone.
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then, cross reactions can be avoided8,9 while good regio
selectivity can be achieved in the reaction. The whole
procedure began with loading aromatic aldehydes to a
solid support, followed by coupling a methylene-pro-
tected acetylacetone to the resin-bound aldehyde group
through the well known Claisen–Schimidt condensation
reaction. In this way, only one terminal a-C of acetyl-
acetone was linked to the resin-bound aldehyde group,
leaving the other terminal a-C for alternative aromatic
aldehyde condensation (Scheme 1). The active methyl-
ene of acetylacetone was protected with a boric-acetyl-
acetone complex (Scheme 2), by forming a stable enol
configuration to avoid the Knoevenagel reaction.6

Briefly, excessive acetylacetone and boric anhydride
(B2O3) were mixed at 70 �C to produce the methylene
protected boric-acetylacetone complex as a white insol-
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Scheme 3. The determination of the loading value by Fmoc detection.

Table 1. The loading value of the first aldehyde onto resin (mmol/g)

On-resin aldehyde
CHOO

LV (mmol/g) 0.48
uble powder. A mixture of the white powder, tributyl
borate and catalytic amount of butylamine in DMF
was added to the aldehyde-bound resin and the mixture
was shaken at 50 �C for 12 h. This step was monitored
by IR based on the fact that the resin-bound aldehyde
groups of p-hydroxybenzaldehyde and vanillin show
typical IR absorption at 1687 cm�1 and 1694 cm�1,
respectively. The resin was then split into several parts,
O
R

H
NN

OHO

Fmoc

+
N λmax = 290 nm

ε290 nm= 5253 cm-1 M-1

CHO

MeO

O O CHO
O

0.64 0.73



Table 2. Compounds obtained from parallel solid-phase synthesis using CLTR as solid support

Compound Structure 1st aldehyde Ketone 2nd aldehyde Purity (%)a Yield (%)b

Yo Ylv

1a

O O
MeO

HO

OHOHC

OMe

OO

CHO 89 29 95

1b

O O

HO

MeO

OH

HO CHO 97 30 99

1c

O O

HO

MeO

OMe

MeO CHO 98 30 99

1d

O O

HO

MeO

O O CHO
90 29 96

2a

O O

HO
OMe

OMe

OMe

HO CHO

MeO

MeO CHO

OMe

95 40 99

2b

O O

HO N
N CHO 95 38 96

2c

O O

HO OMe

MeO CHO 95 38 96

2d

O O

HO

CHO 97 40 99

2e

O O

HO S
CHO

S
92 38 95

2f

O O

HO

Br CHO

Br
90 38 94

2g
HO OMe

OMe

OMe

O

O

MeO

MeO CHO

OMe

98 40 99

2h

HO OH

OMe
O HO

MeO CHO
90 38 95

3a
O

HO

O O

OMe
OMe

OMe

OOHC
OH

OO

MeO

MeO CHO

OMe

90 44 96

3b
O

HO

O O

N
N CHO 92 44 97

3c
O

HO

O O

OH

OMe HO

MeO CHO
93 44 96

3d O

HO

O O

CHO 89 43 94

3e O

HO

O O

OMe

MeO CHO 94 44 96

a Calculated from HPLC and the integral peaks were selected 5 min later, conditions as mentioned in Figure 2.
b Yo: yield based on the original substitution. Ylv: yield based on loading level of the first aldehyde on resin.
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Figure 2. Representative HPLC spectrum of curcumin derivatives
Conditions: BDS HYPERSIL C18 column (250 mm · 4.6 mm) at
254 nm. Gradient: MeOH in H2O variating from 70% to 90% over
20 min, flow rate: 1 mL/min.
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to each part different aromatic aldehydes and tributyl
borates, and catalytic butylamine were added at 50 �C,
and the resin was shaken for 12 h. After the resin was
washed and dried under N2, the boric-acetylacetone
complex was decomposed with 0.4 N HCl at 50 �C for
2 h; the final products were cleaved using DCM/TFA/
MeOH (5:1:1) from the washed and dried resins, and
dried under a vacuum. All products were characterized
without further purification except for the elemental
analysis (EA).

In our current procedure, 2-chlorotrityl chloride resin
(CLTR, substitution value: 1.0 mmol/g), which was
widely used in peptide synthesis,10 was chosen as the
solid support. The phenolic or hydroxyl group in the
first aldehydes was anchored onto CLTR in the presence
of 2.5 equiv of DIEA (diisopropylethylamine) in DCM
through SN1 nucleophilic substitutions. The unreacted
sites of resins were then capped by MeOH.

The loading value of the first building block onto the
solid support is critical to the practicability of a solid
phase synthesis strategy, and it should be properly deter-
mined. In our work, the loading value of the first alde-
hyde onto the resin was determined by a modified
Fmoc detection method11,12 (Scheme 3), which was well
used in solid phase peptide synthesis. Na-Fmoc pro-
tected lysine reacted with resin-bound aldehyde in tri-
methyl orthoformate (TMOF) to produce an on-resin
Schiff base. Twenty percent piperidine in DMF (3 ml)
was utilized to remove Fmoc group from the resin,
and UV absorbance of Fmoc–piperidine adduct was
recorded at 290 nm. The loading value was then calcu-
lated by the equation: LV (mmol/g) = A290/(mg of
resin · 1.75). In this work, the loading value was deter-
mined as up to 0.73 mmol/g that afforded satisfactory
results in the practical works (Table 1).

When cyclohexanone was used in replacing acetyl-
acetone, the monoketone curcumin derivatives4 were
obtained via the similar procedure, except that the
protection/deprotection process was omitted.

A total of 17 unsymmetrical curcumin derivatives listed
in Table 2 were designed and synthesized parallelly
according to the above procedure.13 Products except
1a–c, 2c, 2d, and 2h14,15 were identified as new com-
pounds based on the best of our knowledge, and they
were characterized by 1HNMR, EA, HRMS, ESI/EI-
MS16 and HPLC (Fig. 2, Table 2).

It should be noted that the symmetrical derivatives
Ar2CHCHCOCH2COCHCHAr2 were also formed dur-
ing the second aldehyde condensation (Scheme 1). These
byproducts were not determined and collected, but
washed away in the boric-acetylacetone complex decom-
position step in the current works.

In summary, we have developed a facile solid-phase
strategy and conveniently synthesized 17 unsymmetrical
curcumin derivatives in good yield and high purity.
Compared to the classical liquid-phase protocol, which
needs complicated purification processing even in some
symmetrical curcumin derivatives synthesis, the de-
scribed strategy seems to be more efficient and can read-
ily be adopted to combinatorial chemistry to generate
more novel unsymmetrical curcumin diversities as well
as the symmetrical ones. Extensive works of construct-
ing a curcuminoid-conjugated peptide library targeting
on anti-tumor studies are actively underway in our
laboratory.
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2.87–2.96 (m, 4H), 3.90 (s, 3H), 6.88 (d, 2H, J = 8.5 Hz),
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(s, 3H), 4.66 (s, 2H), 5.75 (s, 1H, enol), 6.38 (d, 1H,
J = 3 Hz), 6.49 (d, 1H, J = 16 Hz), 6.51 (d, 1H, J =
15.5 Hz), 6.55 (d, 1H, J = 3.5 Hz), 6.91 (d, 2H,
J = 8.5 Hz), 7.36 (d, 1H, J = 15 Hz), 7.50 (d, 2H,
J = 9 Hz), 7.61 (d, 1H, J = 16 Hz). EI-MS m/z: 326
(M+�), 308, 161. Elem. Anal. Calcd for C19H18O5: C,
69.93; H, 5.56. Found: C, 69.71; H, 5.97.
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